balloon_RL
balloon_RL(
phi=1.0,
kappa=1 / 1.54,
gamma=1 / 2.46,
E_0=0.34,
tau=0.98,
alpha=0.33,
V_0=0.02,
v_0=40.3,
TE=40 / 1000.0,
epsilon=1.43,
r_0=25,
)A balloon model with revised coefficients and linear BOLD equation derived from Stephan et al. (2007).
Equivalent code:
balloon_RL = BoldModel(
parameters = dict(
second = 1000.0,
phi = 1.0,
kappa = 1/1.54,
gamma = 1/2.46,
E_0 = 0.34,
tau = 0.98,
alpha = 0.33,
V_0 = 0.02,
v_0 = 40.3,
TE = 40/1000.,
epsilon = 1.43,
r_0 = 25.,
),
equations = [
# Single input
ann.Variable('I_CBF = sum(I_CBF)', init=0.0),
ann.Variable('ds/dt = (phi * I_CBF - kappa * s - gamma * (f_in - 1))/second', init=0.0),
ann.Variable('df_in/dt = s / second', init=1.0, min=0.01),
ann.Variable('E = 1 - (1 - E_0)**(1 / f_in)', init=0.3424),
ann.Variable('dq/dt = (f_in * E / E_0 - (q / v) * f_out)/(tau*second)', init=1.0, min=0.01),
ann.Variable('dv/dt = (f_in - f_out)/(tau*second), init=1.0, min=0.01),
ann.Variable('f_out = v**(1 / alpha)', init=1, min=0.01),
# Revised coefficients
ann.Variable('k_1 = 4.3 * v_0 * E_0 * TE'),
ann.Variable('k_2 = epsilon * r_0 * E_0 * TE'),
ann.Variable('k_3 = 1 - epsilon'),
# Linear equation
ann.Variable('BOLD = V_0 * ((k_1 + k_2) * (1 - q) + (k_3 - k_2) * (1 - v))'),
],
inputs="I_CBF",
)Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| phi | input coefficient | 1.0 |
|
| kappa | signal decay | 1 / 1.54 |
|
| gamma | feedback regulation | 1 / 2.46 |
|
| E_0 | oxygen extraction fraction at rest | 0.34 |
|
| tau | time constant (in s!) | 0.98 |
|
| alpha | vessel stiffness | 0.33 |
|
| V_0 | resting venous blood volume fraction | 0.02 |
|
| v_0 | frequency offset at the outer surface of the magnetized vessel for fully deoxygenated blood at 1.5 T | 40.3 |
|
| TE | echo time | 40 / 1000.0 |
|
| epsilon | ratio of intra- and extravascular signal | 1.43 |
|
| r_0 | slope of the relation between the intravascular relaxation rate and oxygen saturation | 25 |