ANNarchy 5.0.0
  • ANNarchy
  • Installation
  • Tutorial
  • Manual
  • Notebooks
  • Reference

  • ANNarchy
  • Core components
    • Network
    • Population
    • Projection
    • Monitor
    • PopulationView
    • Dendrite
  • Neuron and Synapse models
    • Neuron
    • Synapse
    • Parameter
    • Variable
    • Creating
    • Pruning
    • Constant
  • Neuron models
    • LeakyIntegrator
    • Izhikevich
    • IF_curr_exp
    • IF_cond_exp
    • IF_curr_alpha
    • IF_cond_alpha
    • HH_cond_exp
    • EIF_cond_alpha_isfa_ista
    • EIF_cond_exp_isfa_ista
  • Synapse models
    • Hebb
    • Oja
    • IBCM
    • STP
    • STDP
  • Inputs
    • InputArray
    • TimedArray
    • PoissonPopulation
    • TimedPoissonPopulation
    • SpikeSourceArray
    • HomogeneousCorrelatedSpikeTrains
    • CurrentInjection
    • DecodingProjection
    • ImagePopulation
    • VideoPopulation
  • Random Distributions
    • Uniform
    • DiscreteUniform
    • Normal
    • LogNormal
    • Exponential
    • Gamma
    • Binomial
  • Functions
    • add_function
    • functions
  • Callbacks
    • every
  • Utilities
    • report
    • timeit
    • sparse_random_matrix
    • sparse_delays_from_weights
    • magic_network
  • Convolution
    • Convolution
    • Pooling
    • Transpose
    • Copy
  • BOLD monitoring
    • BoldMonitor
    • BoldModel
    • balloon_RN
    • balloon_RL
    • balloon_CN
    • balloon_CL
    • balloon_maith2021
    • balloon_two_inputs
  • Tensorboard logging
    • Logger
  • ANN-to-SNN conversion
    • ANNtoSNNConverter
  • DEPRECATED Top-level API
    • setup
    • compile
    • clear
    • reset
    • set_seed
    • get_population
    • get_projection
    • populations
    • projections
    • monitors
    • simulate
    • simulate_until
    • step
    • enable_learning
    • disable_learning
    • get_time
    • set_time
    • get_current_step
    • set_current_step
    • dt
    • save
    • load
    • save_parameters
    • load_parameters
    • callbacks_enabled
    • disable_callbacks
    • enable_callbacks
    • clear_all_callbacks

On this page

  • Neuron
    • Parameters

Neuron

Neuron(
    self,
    parameters='',
    equations='',
    spike=None,
    axon_spike=None,
    reset=None,
    axon_reset=None,
    refractory=None,
    functions=None,
    name='',
    description='',
    extra_values={},
)

Base class to define a neuron model.

Neurons are rate-coded by default (in which case they must define the variable r). parameters expects a dictionary of parameter values, equations expects a list of variables.

Spiking neurons must define the spike condition (and usually also reset). They do not need to define r.

LIF = ann.Neuron(
    parameters = dict(
        tau = 10.0
    ),
    equations = [
        "tau * dv/dt + v = g_exc",
    ],
    spike = "v > 30.0",
    reset = "v = 0.0",
    refractory = 5.0,
    name = "LIF",
    description = "Leaky Integrate-and-Fire spiking neuron with time constant $\tau$." 
)

Parameters

Name Type Description Default
parameters str | dict parameters of the neuron and their initial value. ''
equations str | list equations defining the temporal evolution of variables. ''
functions str additional functions used in the variables’ equations. None
spike str condition to emit a spike (only for spiking neurons). None
axon_spike str condition to emit an axonal spike (only for spiking neurons and optional). The axonal spike can appear additional to the spike and is independent from refractoriness of a neuron. None
reset str | list changes to the variables after a spike (only for spiking neurons). None
axon_reset str | list changes to the variables after an axonal spike (only for spiking neurons). None
refractory str refractory period of a neuron after a spike (only for spiking neurons). None
name str name of the neuron type (used for reporting only). ''
description str short description of the neuron type (used for reporting). ''
Dendrite
Synapse
 

Copyright Julien Vitay, Helge Ülo Dinkelbach, Fred Hamker