Copy
Copy(self,
pre,
post,
target,='pre.r * w',
psp='sum',
operation=None,
name=False,
copied=0,
net_id )
Creates a virtual projection reusing the weights and delays of an already-defined projection.
Although the original projection can be learnable, this one can not. Changes in the original weights will be reflected in this projection. The only possible modifications are psp
and operation
.
The pre- and post-synaptic populations of both projections must have the same geometry.
Example:
import ANNarchy as ann
from ANNarchy.extensions.convolution import Copy
= ann.Network()
net
= net.create(1000, ann.Izhikevich)
pop1 = net.create(1000, ann.Izhikevich)
pop2 = net.create(1000, ann.Izhikevich)
pop3
= ann.Projection(pop1, pop2, "exc")
proj 0.1, 0.5)
proj.fixed_probability(
= Copy(pop1, pop3, "exc")
copy_proj copy_proj.copy(proj)
Parameters
Name | Type | Description | Default |
---|---|---|---|
pre | pre-synaptic population (either its name or a Population object). |
required | |
post | post-synaptic population (either its name or a Population object). |
required | |
target | type of the connection | required | |
psp | continuous influence of a single synapse on the post-synaptic neuron (default for rate-coded: w*pre.r ). |
'pre.r * w' |
|
operation | operation (sum, max, min, mean) performed by the kernel (default: sum). | 'sum' |
Methods
Name | Description |
---|---|
copy | Instantiates the projection. |
save_connectivity | Not available. |
save | Not available. |
load | Not available. |
receptive_fields | Not available. |
connectivity_matrix | Not available. |
copy
copy(projection)
Instantiates the projection.
Parameters
Name | Type | Description | Default |
---|---|---|---|
projection | Existing projection to copy. | required |
save_connectivity
save_connectivity(filename)
Not available.
save
save(filename)
Not available.
load
load(filename)
Not available.
receptive_fields
='w', in_post_geometry=True) receptive_fields(variable
Not available.
connectivity_matrix
=0.0) connectivity_matrix(fill
Not available.