EIF_cond_alpha_isfa_ista
models.Neurons.EIF_cond_alpha_isfa_ista(self,
=-70.6,
v_rest=0.281,
cm=9.3667,
tau_m=0.1,
tau_refrac=5.0,
tau_syn_E=5.0,
tau_syn_I=0.0,
e_rev_E=-80.0,
e_rev_I=144.0,
tau_w=4.0,
a=0.0805,
b=0.0,
i_offset=2.0,
delta_T=-50.4,
v_thresh=-70.6,
v_reset=-40.0,
v_spike )
Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation conductances (isfa, ista reps.).
Definition according to:
Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642
Parameters:
- v_rest = -70.6 : Resting membrane potential (mV)
- cm = 0.281 : Capacity of the membrane (nF)
- tau_m = 9.3667 : Membrane time constant (ms)
- tau_refrac = 0.1 : Duration of refractory period (ms)
- tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
- tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
- e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
- e_rev_I = -80.0 : Reversal potential for inhibitory input (mv)
- tau_w = 144.0 : Time constant of the adaptation variable (ms)
- a = 4.0 : Scaling of the adaptation variable
- b = 0.0805 : Increment on the adaptation variable after a spike
- i_offset = 0.0 : Offset current (nA)
- delta_T = 2.0 : Speed of the exponential (mV)
- v_thresh = -50.4 : Spike threshold for the exponential (mV)
- v_reset = -70.6 : Reset potential after a spike (mV)
- v_spike = -40.0 : Spike threshold (mV)
Variables:
I : input current (nA):
I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset
v : membrane potential in mV (init=-70.6):
tau_m * dv/dt = (v_rest - v + delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w)
w : adaptation variable (init=0.0):
tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w
g_exc : excitatory current (init = 0.0):
tau_syn_E * dg_exc/dt = - g_exc
g_inh : inhibitory current (init = 0.0):
tau_syn_I * dg_inh/dt = - g_inh
alpha_exc : alpha function of excitatory current (init = 0.0):
tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc
alpha_inh: alpha function of inhibitory current (init = 0.0):
tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh
Spike emission:
v > v_spike
Reset:
v = v_reset
u += b
The ODEs are solved using the explicit Euler method.
Equivalent code:
= Neuron(
EIF_cond_alpha_isfa_ista = """
parameters v_rest = -70.6
cm = 0.281
tau_m = 9.3667
tau_syn_E = 5.0
tau_syn_I = 5.0
e_rev_E = 0.0
e_rev_I = -80.0
tau_w = 144.0
a = 4.0
b = 0.0805
i_offset = 0.0
delta_T = 2.0
v_thresh = -50.4
v_reset = -70.6
v_spike = -40.0
""",
= """
equations gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)
I = alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset
tau_m * dv/dt = (v_rest - v + delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=-70.6
tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w
tau_syn_E * dg_exc/dt = - g_exc : exponential
tau_syn_I * dg_inh/dt = - g_inh : exponential
tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc : exponential
tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh : exponential
""",
= "v > v_spike",
spike = """
reset v = v_reset
w += b
""",
= 0.1
refractory )