ANNarchy 4.8.2
  • ANNarchy
  • Installation
  • Tutorial
  • Manual
  • Notebooks
  • Reference

  • Reference
  • Core components
    • Population
    • Projection
    • Neuron
    • Synapse
    • Monitor
    • PopulationView
    • Dendrite
    • Network
  • Configuration
    • setup
    • compile
    • clear
    • reset
    • set_seed
    • get_population
    • get_projection
    • populations
    • projections
    • monitors
  • Simulation
    • simulate
    • simulate_until
    • step
    • parallel_run
    • enable_learning
    • disable_learning
    • get_time
    • set_time
    • get_current_step
    • set_current_step
    • dt
  • Neuron models
    • LeakyIntegrator
    • Izhikevich
    • IF_curr_exp
    • IF_cond_exp
    • IF_curr_alpha
    • IF_cond_alpha
    • HH_cond_exp
    • EIF_cond_alpha_isfa_ista
    • EIF_cond_exp_isfa_ista
  • Synapse models
    • STP
    • STDP
    • Hebb
    • Oja
    • IBCM
  • Inputs
    • InputArray
    • TimedArray
    • PoissonPopulation
    • TimedPoissonPopulation
    • SpikeSourceArray
    • HomogeneousCorrelatedSpikeTrains
    • CurrentInjection
    • DecodingProjection
    • ImagePopulation
    • VideoPopulation
  • IO
    • save
    • load
    • save_parameters
    • load_parameters
  • Utilities
    • report
  • Random Distributions
    • Uniform
    • DiscreteUniform
    • Normal
    • LogNormal
    • Exponential
    • Gamma
    • Binomial
  • Functions and Constants
    • add_function
    • functions
    • Constant
    • get_constant
  • Plotting
    • raster_plot
    • histogram
    • inter_spike_interval
    • coefficient_of_variation
    • population_rate
    • smoothed_rate
  • Callbacks
    • every
    • callbacks_enabled
    • disable_callbacks
    • enable_callbacks
    • clear_all_callbacks
  • Convolution
    • Convolution
    • Pooling
    • Transpose
    • Copy
  • BOLD monitoring
    • BoldMonitor
    • BoldModel
    • balloon_RN
    • balloon_RL
    • balloon_CN
    • balloon_CL
    • balloon_maith2021
    • balloon_two_inputs
  • Tensorboard logging
    • Logger
  • ANN-to-SNN conversion
    • ANNtoSNNConverter

On this page

  • Dendrite
    • Attributes
    • Methods
      • create_synapse
      • create_synapses
      • get
      • prune_synapse
      • prune_synapses
      • receptive_field
      • set
      • synapse

Dendrite

core.Dendrite.Dendrite(self, proj, post_rank, idx)

A Dendrite is a sub-group of a Projection, gathering the synapses between the pre-synaptic population and a single post-synaptic neuron.

It can not be created directly, only through a call to Projection.dendrite(rank):

dendrite = proj.dendrite(6)

Attributes

Name Description
post_rank Rank of the post-synaptic neuron.
pre_ranks List of ranks of pre-synaptic neurons.
proj Parent projection.
size Number of synapses.
synapses Iteratively returns the synapses corresponding to this dendrite.

Methods

Name Description
create_synapse Creates a synapse for this dendrite with the given pre-synaptic neuron.
create_synapses Creates a synapse for this dendrite with the given pre-synaptic neurons.
get Returns the value of a variable/parameter.
prune_synapse Removes the synapse with the given pre-synaptic neuron from the dendrite.
prune_synapses Removes the synapses which belong to the provided pre-synaptic neurons from the dendrite.
receptive_field Returns the given variable as a receptive field.
set Sets the value of a parameter/variable of all synapses.
synapse Returns the synapse coming from the corresponding presynaptic neuron.

create_synapse

core.Dendrite.Dendrite.create_synapse(rank, w=0.0, delay=0)

Creates a synapse for this dendrite with the given pre-synaptic neuron.

Parameters

Name Type Description Default
rank int rank of the pre-synaptic neuron required
w float synaptic weight. 0.0
delay float synaptic delay. 0

create_synapses

core.Dendrite.Dendrite.create_synapses(ranks, weights=None, delays=None)

Creates a synapse for this dendrite with the given pre-synaptic neurons.

Parameters

Name Type Description Default
ranks list[int] list of ranks of the pre-synaptic neurons. required
weights list[float] list of synaptic weights (default: 0.0). None
delays list[float] list of synaptic delays (default = dt). None

get

core.Dendrite.Dendrite.get(name)

Returns the value of a variable/parameter.

Example:

dendrite.get('w')

Parameters

Name Type Description Default
name str name of the parameter/variable. required

Returns

Name Type Description
float a single value.

prune_synapse

core.Dendrite.Dendrite.prune_synapse(rank)

Removes the synapse with the given pre-synaptic neuron from the dendrite.

Parameters

Name Type Description Default
rank int rank of the pre-synaptic neuron required

prune_synapses

core.Dendrite.Dendrite.prune_synapses(ranks)

Removes the synapses which belong to the provided pre-synaptic neurons from the dendrite.

Parameters

Name Type Description Default
ranks list[int] list of ranks of the pre-synaptic neurons. required

receptive_field

core.Dendrite.Dendrite.receptive_field(variable='w', fill=0.0)

Returns the given variable as a receptive field.

A Numpy array of the same geometry as the pre-synaptic population is returned. Non-existing synapses are replaced by zeros (or the value fill).

Parameters

Name Type Description Default
variable str name of the variable (default = ‘w’) 'w'
fill float value to use when a synapse does not exist (default: 0.0). 0.0

Returns

Name Type Description
np.array an array.

set

core.Dendrite.Dendrite.set(value)

Sets the value of a parameter/variable of all synapses.

Example:

dendrite.set( { 'tau' : 20, 'w'= Uniform(0.0, 1.0) } )

Parameters

Name Type Description Default
value dict a dictionary containing the parameter/variable names as keys. required

synapse

core.Dendrite.Dendrite.synapse(pos)

Returns the synapse coming from the corresponding presynaptic neuron.

Parameters

Name Type Description Default
pos int | tuple[int] can be either the rank or the coordinates of the presynaptic neuron required

Returns

Name Type Description
IndividualSynapse IndividualSynapse wrapper instance.
PopulationView
Network
 

Copyright Julien Vitay, Helge Ülo Dinkelbach, Fred Hamker