HH_cond_exp
models.Neurons.HH_cond_exp(self,
=20.0,
gbar_Na=6.0,
gbar_K=0.01,
gleak=0.2,
cm=-63.0,
v_offset=50.0,
e_rev_Na=-90.0,
e_rev_K=-65.0,
e_rev_leak=0.0,
e_rev_E=-80.0,
e_rev_I=0.2,
tau_syn_E=2.0,
tau_syn_I=0.0,
i_offset=0.0,
v_thresh )
Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier potassium currents using the ion channel models from Traub.
Parameters:
- gbar_Na = 20.0 : Maximal conductance of the Sodium current.
- gbar_K = 6.0 : Maximal conductance of the Potassium current.
- gleak = 0.01 : Conductance of the leak current (nF)
- cm = 0.2 : Capacity of the membrane (nF)
- v_offset = -63.0 : Threshold for the rate constants (mV)
- e_rev_Na = 50.0 : Reversal potential for the Sodium current (mV)
- e_rev_K = -90.0 : Reversal potential for the Potassium current (mV)
- e_rev_leak = -65.0 : Reversal potential for the leak current (mV)
- e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
- e_rev_I = -80.0 : Reversal potential for inhibitory input (mV)
- tau_syn_E = 0.2 : Decay time of excitatory synaptic current (ms)
- tau_syn_I = 2.0 : Decay time of inhibitory synaptic current (ms)
- i_offset = 0.0 : Offset current (nA)
- v_thresh = 0.0 : Threshold for spike emission
Variables:
Voltage-dependent rate constants an, bn, am, bm, ah, bh:
an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0) am = 0.32 * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0) ah = 0.128 * exp((17.0 - v + v_offset)/18.0)
bn = 0.5 * exp ((10.0 - v + v_offset)/40.0) bm = 0.28 * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0) bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )
Activation variables n, m, h (h is initialized to 1.0, n and m to 0.0):
dn/dt = an * (1.0 - n) - bn * n dm/dt = am * (1.0 - m) - bm * m dh/dt = ah * (1.0 - h) - bh * h
v : membrane potential in mV (init=-65.0):
cm * dv/dt = gleak(e_rev_leak -v) + gbar_K n4 * (e_rev_K - v) + gbar_Na * m3 * h * (e_rev_Na - v) + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset
g_exc : excitatory conductance (init = 0.0):
tau_syn_E * dg_exc/dt = - g_exc
g_inh : inhibitory conductance (init = 0.0):
tau_syn_I * dg_inh/dt = - g_inh
Spike emission (the spike is emitted only once when v crosses the threshold from below):
v > v_thresh and v(t-1) < v_thresh
The ODEs for n, m, h and v are solved using the midpoint method, while the conductances g_exc and g_inh are solved using the exponential Euler method.
Equivalent code:
= Neuron(
HH_cond_exp = """
parameters gbar_Na = 20.0
gbar_K = 6.0
gleak = 0.01
cm = 0.2
v_offset = -63.0
e_rev_Na = 50.0
e_rev_K = -90.0
e_rev_leak = -65.0
e_rev_E = 0.0
e_rev_I = -80.0
tau_syn_E = 0.2
tau_syn_I = 2.0
i_offset = 0.0
v_thresh = 0.0
""",
= """
equations # Previous membrane potential
prev_v = v
# Voltage-dependent rate constants
an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0)
am = 0.32 * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0)
ah = 0.128 * exp((17.0 - v + v_offset)/18.0)
bn = 0.5 * exp ((10.0 - v + v_offset)/40.0)
bm = 0.28 * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0)
bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )
# Activation variables
dn/dt = an * (1.0 - n) - bn * n : init = 0.0, exponential
dm/dt = am * (1.0 - m) - bm * m : init = 0.0, exponential
dh/dt = ah * (1.0 - h) - bh * h : init = 1.0, exponential
# Membrane equation
cm * dv/dt = gleak*(e_rev_leak -v) + gbar_K * n**4 * (e_rev_K - v) + gbar_Na * m**3 * h * (e_rev_Na - v)
+ g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset: exponential, init=-65.0
# Exponentially-decaying conductances
tau_syn_E * dg_exc/dt = - g_exc : exponential
tau_syn_I * dg_inh/dt = - g_inh : exponential
""",
= "(v > v_thresh) and (prev_v <= v_thresh)",
spike = ""
reset )