ANNarchy 5.0.0
  • ANNarchy
  • Installation
  • Tutorial
  • Manual
  • Notebooks
  • Reference

  • ANNarchy
  • Core components
    • Network
    • Population
    • Projection
    • Monitor
    • PopulationView
    • Dendrite
  • Neuron and Synapse models
    • Neuron
    • Synapse
    • Parameter
    • Variable
    • Creating
    • Pruning
    • Constant
  • Neuron models
    • LeakyIntegrator
    • Izhikevich
    • IF_curr_exp
    • IF_cond_exp
    • IF_curr_alpha
    • IF_cond_alpha
    • HH_cond_exp
    • EIF_cond_alpha_isfa_ista
    • EIF_cond_exp_isfa_ista
  • Synapse models
    • Hebb
    • Oja
    • IBCM
    • STP
    • STDP
  • Inputs
    • InputArray
    • TimedArray
    • PoissonPopulation
    • TimedPoissonPopulation
    • SpikeSourceArray
    • HomogeneousCorrelatedSpikeTrains
    • CurrentInjection
    • DecodingProjection
    • ImagePopulation
    • VideoPopulation
  • Random Distributions
    • Uniform
    • DiscreteUniform
    • Normal
    • LogNormal
    • Exponential
    • Gamma
    • Binomial
  • Functions
    • add_function
    • functions
  • Callbacks
    • every
  • Utilities
    • report
    • timeit
    • sparse_random_matrix
    • sparse_delays_from_weights
    • magic_network
  • Convolution
    • Convolution
    • Pooling
    • Transpose
    • Copy
  • BOLD monitoring
    • BoldMonitor
    • BoldModel
    • balloon_RN
    • balloon_RL
    • balloon_CN
    • balloon_CL
    • balloon_maith2021
    • balloon_two_inputs
  • Tensorboard logging
    • Logger
  • ANN-to-SNN conversion
    • ANNtoSNNConverter
  • DEPRECATED Top-level API
    • setup
    • compile
    • clear
    • reset
    • set_seed
    • get_population
    • get_projection
    • populations
    • projections
    • monitors
    • simulate
    • simulate_until
    • step
    • enable_learning
    • disable_learning
    • get_time
    • set_time
    • get_current_step
    • set_current_step
    • dt
    • save
    • load
    • save_parameters
    • load_parameters
    • callbacks_enabled
    • disable_callbacks
    • enable_callbacks
    • clear_all_callbacks

On this page

  • HH_cond_exp
    • Parameters

HH_cond_exp

HH_cond_exp(
    self,
    gbar_Na=20.0,
    gbar_K=6.0,
    gleak=0.01,
    cm=0.2,
    v_offset=-63.0,
    e_rev_Na=50.0,
    e_rev_K=-90.0,
    e_rev_leak=-65.0,
    e_rev_E=0.0,
    e_rev_I=-80.0,
    tau_syn_E=0.2,
    tau_syn_I=2.0,
    i_offset=0.0,
    v_thresh=0.0,
)

Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier potassium currents using the ion channel models from Traub.

The ODEs for n, m, h and v are solved using the midpoint method, while the conductances g_exc and g_inh are solved using the exponential Euler method.

Equivalent code:

HH_cond_exp = Neuron(
    parameters = dict(
        gbar_Na = 20.0
        gbar_K = 6.0
        gleak = 0.01
        cm = 0.2 
        v_offset = -63.0 
        e_rev_Na = 50.0
        e_rev_K = -90.0 
        e_rev_leak = -65.0
        e_rev_E = 0.0
        e_rev_I = -80.0 
        tau_syn_E = 0.2
        tau_syn_I = 2.0
        i_offset = 0.0
        v_thresh = 0.0
    ), 
    equations = [
        # Previous membrane potential
        'prev_v = v',

        # Voltage-dependent rate constants
        'an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0)',
        'am = 0.32  * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0)',
        'ah = 0.128 * exp((17.0 - v + v_offset)/18.0)',

        'bn = 0.5   * exp ((10.0 - v + v_offset)/40.0)',
        'bm = 0.28  * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0)',
        'bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )',

        # Activation variables
        ann.Variable('dn/dt = an * (1.0 - n) - bn * n', init = 0.0, method="exponential")
        ann.Variable('dm/dt = am * (1.0 - m) - bm * m', init = 0.0, method="exponential")
        ann.Variable('dh/dt = ah * (1.0 - h) - bh * h', init = 1.0, method="exponential")

        # Membrane equation
        ann.Variable('cm * dv/dt = gleak*(e_rev_leak -v) + gbar_K * n**4 * (e_rev_K - v) + gbar_Na * m**3 * h * (e_rev_Na - v)
                        + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset', method="exponential", init=-65.0),

        # Exponentially-decaying conductances
        ann.Variable('tau_syn_E * dg_exc/dt = - g_exc', method="exponential")
        ann.Variable('tau_syn_I * dg_inh/dt = - g_inh', method="exponential")
    ],
    spike = "(v > v_thresh) and (prev_v <= v_thresh)",
    reset = ""
)

Parameters

Name Type Description Default
gbar_Na Maximal conductance of the Sodium current. 20.0
gbar_K Maximal conductance of the Potassium current. 6.0
gleak Conductance of the leak current (nF) 0.01
cm Capacity of the membrane (nF) 0.2
v_offset Threshold for the rate constants (mV) -63.0
e_rev_Na Reversal potential for the Sodium current (mV) 50.0
e_rev_K Reversal potential for the Potassium current (mV) -90.0
e_rev_leak Reversal potential for the leak current (mV) -65.0
e_rev_E Reversal potential for excitatory input (mV) 0.0
e_rev_I Reversal potential for inhibitory input (mV) -80.0
tau_syn_E Decay time of excitatory synaptic current (ms) 0.2
tau_syn_I Decay time of inhibitory synaptic current (ms) 2.0
i_offset Offset current (nA) 0.0
v_thresh Threshold for spike emission 0.0
IF_cond_alpha
EIF_cond_alpha_isfa_ista
 

Copyright Julien Vitay, Helge Ülo Dinkelbach, Fred Hamker