ANNarchy 5.0.0
  • ANNarchy
  • Installation
  • Tutorial
  • Manual
  • Notebooks
  • Reference

  • ANNarchy
  • Core components
    • Network
    • Population
    • Projection
    • Monitor
    • PopulationView
    • Dendrite
  • Neuron and Synapse models
    • Neuron
    • Synapse
    • Parameter
    • Variable
    • Creating
    • Pruning
    • Constant
  • Neuron models
    • LeakyIntegrator
    • Izhikevich
    • IF_curr_exp
    • IF_cond_exp
    • IF_curr_alpha
    • IF_cond_alpha
    • HH_cond_exp
    • EIF_cond_alpha_isfa_ista
    • EIF_cond_exp_isfa_ista
  • Synapse models
    • Hebb
    • Oja
    • IBCM
    • STP
    • STDP
  • Inputs
    • InputArray
    • TimedArray
    • PoissonPopulation
    • TimedPoissonPopulation
    • SpikeSourceArray
    • HomogeneousCorrelatedSpikeTrains
    • CurrentInjection
    • DecodingProjection
    • ImagePopulation
    • VideoPopulation
  • Random Distributions
    • Uniform
    • DiscreteUniform
    • Normal
    • LogNormal
    • Exponential
    • Gamma
    • Binomial
  • Functions
    • add_function
    • functions
  • Callbacks
    • every
  • Utilities
    • report
    • timeit
    • sparse_random_matrix
    • sparse_delays_from_weights
    • magic_network
  • Convolution
    • Convolution
    • Pooling
    • Transpose
    • Copy
  • BOLD monitoring
    • BoldMonitor
    • BoldModel
    • balloon_RN
    • balloon_RL
    • balloon_CN
    • balloon_CL
    • balloon_maith2021
    • balloon_two_inputs
  • Tensorboard logging
    • Logger
  • ANN-to-SNN conversion
    • ANNtoSNNConverter
  • DEPRECATED Top-level API
    • setup
    • compile
    • clear
    • reset
    • set_seed
    • get_population
    • get_projection
    • populations
    • projections
    • monitors
    • simulate
    • simulate_until
    • step
    • enable_learning
    • disable_learning
    • get_time
    • set_time
    • get_current_step
    • set_current_step
    • dt
    • save
    • load
    • save_parameters
    • load_parameters
    • callbacks_enabled
    • disable_callbacks
    • enable_callbacks
    • clear_all_callbacks

On this page

  • IF_cond_exp
    • Parameters

IF_cond_exp

IF_cond_exp(
    self,
    v_rest=-65.0,
    cm=1.0,
    tau_m=20.0,
    tau_refrac=0.0,
    tau_syn_E=5.0,
    tau_syn_I=5.0,
    e_rev_E=0.0,
    e_rev_I=-70.0,
    v_thresh=-50.0,
    v_reset=-65.0,
    i_offset=0.0,
)

Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic conductance.

The ODEs are solved using the exponential Euler method.

Equivalent code:

IF_cond_exp = Neuron(
    parameters = dict(
        v_rest = ann.Parameter(-65.0),
        cm  = ann.Parameter(1.0),
        tau_m  = ann.Parameter(20.0),
        tau_syn_E = ann.Parameter(5.0),
        tau_syn_I = ann.Parameter(5.0),
        e_rev_E = ann.Parameter(0.0),
        e_rev_I = ann.Parameter(-70.0),
        v_thresh = ann.Parameter(-50.0),
        v_reset = ann.Parameter(-65.0),
        i_offset = ann.Parameter(0.0),
    ), 
    equations = [
        ann.Variable(
            'cm * dv/dt = cm/tau_m * (v_rest -v) + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset',
            method='exponential', init=-65.0
        ),
        ann.Variable('tau_syn_E * dg_exc/dt = - g_exc', method='exponential'),
        ann.Variable('tau_syn_I * dg_inh/dt = - g_inh', method='exponential'),
    ],
    spike = "v > v_thresh",
    reset = "v = v_reset",
    refractory = 0.0
)

Parameters

Name Type Description Default
v_rest Resting membrane potential (mV) -65.0
cm Capacity of the membrane (nF) 1.0
tau_m Membrane time constant (ms) 20.0
tau_refrac Duration of refractory period (ms) 0.0
tau_syn_E Decay time of excitatory synaptic current (ms) 5.0
tau_syn_I Decay time of inhibitory synaptic current (ms) 5.0
e_rev_E Reversal potential of excitatory conductance (mV) 0.0
e_rev_I Reversal potential of inhibitory conductance (mV) -70.0
v_thresh Spike threshold (mV) -50.0
v_reset Reset potential after a spike (mV) -65.0
i_offset Offset current (nA) 0.0
IF_curr_exp
IF_curr_alpha
 

Copyright Julien Vitay, Helge Ülo Dinkelbach, Fred Hamker