ANNarchy 5.0.0
  • ANNarchy
  • Installation
  • Tutorial
  • Manual
  • Notebooks
  • Reference

  • ANNarchy
  • Core components
    • Network
    • Population
    • Projection
    • Monitor
    • PopulationView
    • Dendrite
  • Neuron and Synapse models
    • Neuron
    • Synapse
    • Parameter
    • Variable
    • Creating
    • Pruning
    • Constant
  • Neuron models
    • LeakyIntegrator
    • Izhikevich
    • IF_curr_exp
    • IF_cond_exp
    • IF_curr_alpha
    • IF_cond_alpha
    • HH_cond_exp
    • EIF_cond_alpha_isfa_ista
    • EIF_cond_exp_isfa_ista
  • Synapse models
    • Hebb
    • Oja
    • IBCM
    • STP
    • STDP
  • Inputs
    • InputArray
    • TimedArray
    • PoissonPopulation
    • TimedPoissonPopulation
    • SpikeSourceArray
    • HomogeneousCorrelatedSpikeTrains
    • CurrentInjection
    • DecodingProjection
    • ImagePopulation
    • VideoPopulation
  • Random Distributions
    • Uniform
    • DiscreteUniform
    • Normal
    • LogNormal
    • Exponential
    • Gamma
    • Binomial
  • Functions
    • add_function
    • functions
  • Callbacks
    • every
  • Utilities
    • report
    • timeit
    • sparse_random_matrix
    • sparse_delays_from_weights
    • magic_network
  • Convolution
    • Convolution
    • Pooling
    • Transpose
    • Copy
  • BOLD monitoring
    • BoldMonitor
    • BoldModel
    • balloon_RN
    • balloon_RL
    • balloon_CN
    • balloon_CL
    • balloon_maith2021
    • balloon_two_inputs
  • Tensorboard logging
    • Logger
  • ANN-to-SNN conversion
    • ANNtoSNNConverter
  • DEPRECATED Top-level API
    • setup
    • compile
    • clear
    • reset
    • set_seed
    • get_population
    • get_projection
    • populations
    • projections
    • monitors
    • simulate
    • simulate_until
    • step
    • enable_learning
    • disable_learning
    • get_time
    • set_time
    • get_current_step
    • set_current_step
    • dt
    • save
    • load
    • save_parameters
    • load_parameters
    • callbacks_enabled
    • disable_callbacks
    • enable_callbacks
    • clear_all_callbacks

On this page

  • STDP
    • Parameters

STDP

STDP(
    self,
    tau_plus=20.0,
    tau_minus=20.0,
    A_plus=0.01,
    A_minus=0.01,
    w_min=0.0,
    w_max=1.0,
)

Spike-timing dependent plasticity, online version.

Song, S., and Abbott, L.F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339-350.

Equivalent code:

STDP = ann.Synapse(
    parameters = dict(
        tau_plus = 20.0,
        tau_minus = 20.0,
        A_plus = 0.01,
        A_minus = 0.01,
        w_min = 0.0,
        w_max = 1.0,
    ),
    equations = [
        ann.Variable('tau_plus  * dx/dt = -x', method='event-driven'),
        ann.Variable('tau_minus * dy/dt = -y', method='event-driven'),
    ],
    pre_spike="""
        g_target += w
        x += A_plus * w_max
        w = clip(w + y, w_min , w_max)
    """,
    post_spike="""
        y -= A_minus * w_max
        w = clip(w + x, w_min , w_max)
    """
)

Parameters

Name Type Description Default
tau_plus time constant of the pre-synaptic trace (ms) 20.0
tau_minus time constant of the pre-synaptic trace (ms) 20.0
A_plus increase of the pre-synaptic trace after a spike. 0.01
A_minus decrease of the post-synaptic trace after a spike. 0.01
w_min minimal value of the weight w. 0.0
w_max maximal value of the weight w. 1.0
STP
InputArray
 

Copyright Julien Vitay, Helge Ülo Dinkelbach, Fred Hamker